激光冷却
- 1997年获得诺贝尔奖
- For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity. That is, more homogeneous velocities among particles corresponds to a lower temperature. Laser cooling techniques combine atomic spectroscopy with the aforementioned mechanical effect of light to compress the velocity distribution of an ensemble of particles, thereby cooling the particles.
- 多普勒cooling mostly used for low density gas
- for Rb-85 is ~150uK 多普勒冷却极限
- 激光的频率稍稍低于原子中电子跃迁发射的频率,所以当原子靠近激光时,由于多普勒效应,激光相对于原子的频率增高,因此更加接近电子跃迁能级,吸收光子(激光)的概率增高
- 吸收光子损失动量,原子跃迁到激发态,从激发态落回基态又重新获得和放出光子等量但反向的动量,放出光子的方向是随机的,因此获得的动量方向是随机的,如果获得了和运动方向相反的动量,这个原子就会减速,因此动能会减少。不断重复这个过程,一坨原子的速度都会减少,从而温度降低。
- 在达到动态平衡时,加速和减速相平衡,因此多普勒冷却达到极限。$T_{Doppler}$ = $\hbar$ / $\gamma$(2$k_B$), where $\gamma$ is the natural linewidth set by the atoms
Major papers recently
- Mitra et al. 2020 Nature
- Caldwell et al. 2019 PRL
cooling molecules
Continue Reading
- 荧光和磷光 - 2021-11-15
- 做一个激光需要几步 - 2021-08-23
- SEM - 扫描电子显微镜 - 2021-06-07
Comments
This work is licensed under CC BY-NC-ND 4.0
Powered by hugo. Theme adapted from no style please.