Mid of Nowhere

Welcome to the middle of nowhere. That's right, absolute nowhere.

激光冷却

  • 1997年获得诺贝尔奖
  • For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity. That is, more homogeneous velocities among particles corresponds to a lower temperature. Laser cooling techniques combine atomic spectroscopy with the aforementioned mechanical effect of light to compress the velocity distribution of an ensemble of particles, thereby cooling the particles.
  • 多普勒cooling mostly used for low density gas
    • for Rb-85 is ~150uK 多普勒冷却极限
    • 激光的频率稍稍低于原子中电子跃迁发射的频率,所以当原子靠近激光时,由于多普勒效应,激光相对于原子的频率增高,因此更加接近电子跃迁能级,吸收光子(激光)的概率增高
    • 吸收光子损失动量,原子跃迁到激发态,从激发态落回基态又重新获得和放出光子等量但反向的动量,放出光子的方向是随机的,因此获得的动量方向是随机的,如果获得了和运动方向相反的动量,这个原子就会减速,因此动能会减少。不断重复这个过程,一坨原子的速度都会减少,从而温度降低。
    • 在达到动态平衡时,加速和减速相平衡,因此多普勒冷却达到极限。$T_{Doppler}$ = $\hbar$ / $\gamma$(2$k_B$), where $\gamma$ is the natural linewidth set by the atoms

Major papers recently

  1. Mitra et al. 2020 Nature
  2. Caldwell et al. 2019 PRL

cooling molecules


Comments

This work is licensed under CC BY-NC-ND 4.0

Powered by hugo. Theme adapted from no style please.